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CHAPTER I

Introduction

Durinigr the 70’s and early 80’s, considerable effort was devoted to develop-
ing efficient and reliable time-steppiné procedures for transient structural analysis.
Mathematically, the equations governing this type of problems are generally stiff,
i. e., they exhibit a wide spectrum in the linear range. For instance, in thermal
analysis problems, the presence of materials with widely differing conductivities,
such as steel and concrete, may contribute to the spread in eigenvalues. As a fur-
ther example in the area of structural vibrations, the bending stiffness of beams is
typically much smaller than their axial stiffness, which aga.in tends to give widely
varying eigenfrequencies. Another key characteristic of structural problems is that,
in most areas of application, the response lies in the lower part of the spectrum.
Typical examples are: earthquake engineering, fluid/structure interaction problems

in reservoirs, and others.

The algorithms best suited to this type of applications are those which accu-
rately integrate the low frequency content of the response without necessitating the
resolution of the high frequency modes. This inevitably means that the algorithm
must be unconditionally stable, which in turn rules out explicit integration. Thus,
the early work in the area was primarily geared to developing unconditionally stable
time-stepping algorithms for lincar and nonlinear applications. The most promi-
nent example of that class of algorithms, and one which played a central role in all

subsequent developments, is Newmark’s method.
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Within its rénge of unconditional stability, Newmark’s method is implicet.
In typical large scale applications involving nonlinear structures, the cost of New-
mark’s algorithm is dominated by the equation solving phase. More recent research
has endeavored to aﬂeviate this source of computational cost while retaining the
requisite stability of the algorithm. Examples of contributions in this direction are
implicit/explicit partition methods [1}, staggered procedures for coupled problems
[2], the method of alternating directions [3], and semi-implicit procedures such as

Trujillo’s algorithm [4] and element-by-element methods [5,6].

However, by far the most exciting possibility in the algorithm development
area in recent years has been the advent of parallel computers with multipro-
cessing capabilities. Considerable research is presently underway to replace the
traditional algorithms devised for sequential machines by others well suited to par-
allel computing. In this work, we are mainly concerned with the developement of
parallel algorithms in the area of structural dynamics. Thus, a primary objective
is to devise unconditionally stable and accurate time-stepping procedures which
lend themselves to an efficient implementation in concurrent machines. Following
a succinct summary in Chapter II of some features of the new computer architec-
tures which bear on subsequent discussions, and a bricef overview in Chapter III of
current research efforts in the area, a new class of concurrent procedures, or Group
Implicit (GI) algorithms, is introduced and analyzed in Chapter IV. Our numerical
simulations show that GI algorithms hold considerable promise for application in
coarse-grain as well as medium-grain parallel computers. Examples of such com-
puters are the Alliant series, the iPSC Hypercube computer, the ETA machine and

the Cray series.
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CHAPTER II

Survey of Present Parallel Architectures

This chapter summarizes the state of the art in the area of parallel architec-
tures. Firstly, a brief history of parallel processing is given, followed by a survey
of recent advances in parallel computers. It bears emphasis that parallel process-
ing is a rapidly evolving field and the focus of intensive research worldwide. Over
one hundred projects on parallel architectures are under way in the United States

universities and industry (1].
2.1. Brief History of Parallel Processing

In the last 40 years sequential (serial) architectures have dominated the com-
puter architecture world. During this period several improvements, in terms of
computing speed, have been achieved, mostly due to increasingly faster electronic
components. However, this avenue for progress is limited by a simple fact of
Physics: "No signal can travel faster than the spced of light in the vacuum?.
Thus, while the eletronic components themselves may become increasingly faster,
the computer itself is not. Parallel Processing is widely viewed as a solution to this
problem. By performing several subtasks concurrently, the total time required to

perform the combined task is reduced.

Even though Parallel Processing is a phenomenon of the 80’s, the idea of using

parallelism can be traced back to thrce computers developed in the late 60’s [2],
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namely: ILLIAC IV, CDC Star100 and Texas Instrument ASC. Nonctheless, these
computers are not based on the same type of architecture. The ILLIAC IV is an

array processor, while the other two are vector processors.

The array processors [3] are very useful in handling operations with matrices.
They are constituted of a control processor and arithmetic processors. Its operation
is initiated by the control processor fetching an instruction and determining if it is
a matrix operation or not. If it is not then it performs it, otherwise it passes the
instruction onto the arithmetic processors, with each processor holding the part
of the matrix being operated inside its own local memory. Since all processors
receive instructions from the control processor simultaneouly, the entire matrix
operation proceeds in parallel. The FPS-164 Séientiﬁc Computer ! is an attached
processor with an architecture based on array processor technology [4]. In order
to offload the interactive parts of the design and analysis in engineering projects,
Swanson Analysis System Inc., added the FPS-164 attached processor to its DEC

Vax-11/780 superminicomputer [5], making of it a more efficient machine.

The vector processors are also know as pipeline processors [3]. In these com-
| puters a particular vector instruction operates in a sequence of operands (a vector)
rather than on single operands. Vector processing involves a technique known as
pipelining, that can be understood simply with reference to an assembly line. Each
stagé in the pipeline always performs the same subtask to different operands that
go through it. This technique is designed to exploit the bandwidth data movement
outside the pipe in order to keep the pipeline saturated. One of the earliest vector
processors is the CDC Star100 (6] 2 ts central processor has a pipeline arithmetic

unit, which segments arithmetic computations into a sequence of basic operations.

1 Floating Point System, Inc.
2 Control Data Corporation
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The ;irithmetic unit can perform basic operations simultancously on independent
pair of data elements to stream through the pipeline. The Texas Instruments Ad-
vanced Scientific Computer (ASC) * is another example of this first generation
of vector processing supercomputers [7]. The next generation of supercomputers
that exploits vector processing is exemplified by: the CRAY-1 4 which contains 13
independent pipelines referred to as functional units (to carry out a specific task:
multiplication, addition and logical operations), and the CDC Cyber 205 5, which

consists of up to 4 pipelines, each of which performs a variety of operations.

Both array processors and vector processors are SIMD machines (section 2.2.5).
For these machines, the same instruction is executed simultaneously by all proces-

sors on different sets of data.

In a wider sense, some degree of parallelism can be found in other early comput-
ers, in so much as different components could operate concurrently. For instance,
while the central processing unit is busy performing computations, the input could

be read in or the output printed out, by the appropriate devices.

Aside from these _limitcd uses of parallelism, true multiprocessing computers
only began to become widely available in the market and to be the subject of
extensive research over the past decade. Multiprocessing is achieved in MIMD
machines (section 2.2.6). For these, all processors execute simultaneously different
intructions on different sets of data. One of the first computers in this category
was built by linking together two SIMD processors [3], by Cray Rescarch Inc. The
CRAY-XMP consists of two redesigned versions of CRAY-i supc1~compu£crs placed

back-to-back, which can communicate via a cluster of very faster registers.

3 Tezas Instrument, Inc.
4 Cray Research, Inc.
5 Control Data, Inc.



A fundamental characteristic of a Parallel Processing system is its granular-
ity, [8]. The granularity of a system is the size of the units of work allocated to
each processor. Coarse-grain parallelism involves computational processes at the
outermost level of program control and implies a small number of large and com-
plex processors. On the other hand, in fine-grain parallelism the unit of work is
the execution of a statement and it implies a large number of small and simple
processors. The medium-grain parallelism consist of the cases between the other

two extremes.

Lincoln [9] points out that a major choice confronting computer architectures
is the degree of which they can be considered general purpose or special purpose.
In the general purpose category several different parallel architectures have ap-
peared ranging from super computers with only a few powerful processors, i. e.
coarse grained systems (CRAY XMP, CRAY 2, and ETA-10) to massively parallel
computers with thousands of processors, 1. e. fine-grained systems (Connection
Machine of Thinking Machine Inc., with up to 65,536 processors). Other architec-
tures (Alliant FX8, Intel iPSC hypercube) fall between these two extremes, 1. e.,
while not qualifying as supercomputers, their processors are much more powerful
than those in the massively parallel machines (medium-grained systems). Even
though they are classified as general purpose machines, they are suited for solv-
ing specifically scientific problems, due to the programming languages available 1n
them. Spectal purpose machines are designed to solve a particular problem, or class

of problems. Norrie [3] divide them into two categories:

1) The architecture is modeled to reflect the physical structure of the problem
to be solved. An example would be the Finite Element Machine which 1s a
rescarch computer built at Nasa’s Langley Rescarch Center [10]. It consists

of a minicomputer front end, called controller, attached to a MIMD array of
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asynchronous microcomputers, referred to as the array. There is no shared
memory in the system and each processor runs its own program on its own
data. An additional circuitry provides a rich interconnection environment for
communication and cooperative computation. The basic idea is that each
processor is assigned to each node of the finite element grid. Each processor is
connected to its immediate eight neighbors [11], and all the processors in the
systems are conneted through a global bus. Very fast results can be achieved

in this machine, but difficulties arise when the physical problem structure is

altered.

2) The architecture is designed to reflect the general solution method for that
class of problems. An example is the Parfem, a parallel finite element machine
developed at University of Calgary, Canada [3]. The generator of element
stiffness matrices, or Gen, is an array-type processor. Programmed in the
controller are the algorithms to be used for generating the stiffness matrices
and the algorithm for determining the order in which the stiffness matrices are
to be generated. The system-matrix assembler, or Ass, is a vector processor,

while the actual architecture of the Solut, equation solver, has not yet been

established.

Since special purpose machines perform specific tasks, a general approach for
this kind of technology is rare. Nonetheless, Kung [12] provides a gencral guide-
line by introducing the concept of systolic architecture, which is a methodology
for mapping high-level computations into hardware structures. Law [13] dcfines
systolic architectures as: ”devices attached to a conventional computer to perform
a special purpose function with extreme high speed”. In these machines the single
processing element is replaced by an array of processors with built in hardware
instruction. Several systolic algorithms have been developed, especially systolic

matrix algorithms, which are useful in finite clement computations.
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Despite recent progress, there remains a need for more cfficient processors
and inter-connection networks. For example, Adams and Crocket in [10] show
that floating-point arithmetic, communication and synchronization times repre-
sent a significant share of the total execution time of a parallel algorithm. On the
other hand, the interface between user and parallel machine is a challenge that
sroftware specialists will have to deal with promptly. Furthermore, because of the
wide variety of parallel architectures, the issue of portability is a major concern
to code developers. The task of porting parallel codes from one computer to an-
other still involves a great deal of restructuring of the algorithm in order to make
it work well. Some attemps have been made to help users of parallel computers.
In [14] a system is presented that helps users "fine-tune” the output of an auto-
matic system. Another approach to portability [15] is to develop and implement
an abstraction (called monitor) that is independent of the architecture or parallel
processing primitive on any particular machine. As a final example, in [16] the
design of user oriented software to support the solution of large problems by en-
gineers and scientists using a 64-bit array processor, which shares memory with a
32-bit minicomputer is developed. It provides the user with tools to help in the

creation and manipulation of large matrices using the hypermatrix scheme.
2.2. Models of Computation

.'Computers operate on a stream of data through a stream of instructions, 1.
e., a computer program is a sequence of instructions which modifies a set of data.
According to the nature of these streams, computers can be classified into four

categories:
e Single Instruction stream, Single Data strcam (SISD)

e Multiple Instruction stream, Single Data stream (MISD)
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e Single Instruction stream, Multiple Data stream (SIMD)
¢ Multiple Instruction stream, Multiple Data stream (MIMD)

A basic issue in parallel processing is that of the organization of the system’s
memory. The SIMD and MIMD models of computation, prevalent among parallel
computers, can be further classified, according to how their processors communi-

cate, into
e Tightly coupled systems or Shared Memory Computers
e Loosely coupled systems or Interconnection Network Computers

A discussion of these two forms of communication is given in sections 2.2.1 and

9.9.9. In sections 2.2.3 to 2.2.6 the models of computation are described.
2.2.1. Shared Memory Computers

Shared Memory computers are also known as Paralle] Random Access Ma-
chines (PRAM). In this kind of computers communication between processors oc-
curs through the common memory, via variable sharing. In other words, if processor

" A wants to communicate the value of a variable z to processor B, two steps must
be performed. First processor A writes the value of z in its address in memory.

Then processor B reads it from the same location.

While a program is being executed, all processors are allowed to access the
common memory. Depending on whether more than one processor is permitted to
simultaneously read from or write into memory, an additional classification can be

established:

o Exclusive_Read, Exclusive.Write (EREW). Only one processor can access (rch

from or write into) a specific memory location at a time.
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e Concurrent_Read, Exclusive.Write (CREW). Several processors are allowed to
read from the same memory address simultaneously, but only one processor

can write into a specific memory location at a time.

e Exclusive_Read, Concurrent_Write (ERCW). Only one processor can read from
a specific memory location at a time, but several of them can write on the same

address simultaneously.

e Concurrent_Read, Concurrent Write (CRCW). Several processors are allowed

to read from or write into the same location in memory at the same time.

Writing simultaneously on memory may give rise to contention problems if
several processors attempt to store a different value in the same address. In this
case, a decision needs to be made to select which value is to be stored. Usually,
priorities can be set so that only one of the values is stored. By contrast, simultane-
ously reading from the same memory location does not cause contention problems,

since the contents of the location is not changed as a result of the operation.

A pressing issue regarding Shared Memory computers is that, for a large num-
ber of processors, they may be either expensive to built or simply unfeasable. Akl

[17] discusses this issue:

"When one processor needs to gain access to a datum in memory, some
circuitry is needed to create a path from that processor to the location in
memory holding the datum. The cost of such circuitry is usually expressed
as the number of logical gates required to decode the address provided
by the processor. If the memory consists of M locations, then the cost of
the decoding circuitry may be expressed as f(M) for some cost function

f. If N processors share that memory, then the cost of the decoding
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circuitry climbs to N x f(M). For large N and M this may lead to
prohibitively large and expensive decoding circuitry betwecen processors

and the memory”.

While costs can be reduced in several ways, such as, dividing the memory
into R blocks, say of M/R locations each, in practice shared memory computers
have only a few processors. Some examples of such computers are the following:
Denelcor Heterogeneous Element Processor (HEP) 6 with 8 processors, Alliant

FX8 7 with up to 8 processors, and Sequent Balance 8 with up to 30 processors.
2.2.2. Interconnection Network Computers

The Interconnection Network computers are an assembly of loosely coupled
processors. The communication between processors is entirely done via a com-
munication network. Depending on the nature of this network, several different
architectures can be achieved. The ideal network is that in which each processor
is connected to all others. In this case, the communication is immediate between
any two pairs of processors. However for a large number of processors the ideal
network is unfeasible, since the total number of lines to intcrconnect NV processors
is N(N —1)/2 (N — 1 lines leave each processor). In addition, the physical size
of each of the processors limits the number of connections that can be made to it.
Several communication networks based on direct communication between scts of

processors have been proposed. Some of them are described next.

1) Linear Array. Here each processor P; is connected to its neighbors Pi_;

and P;y; through a two-way communication line. The processors on the extremes,

6 Denelcor, Inc.
7 Alliant Computer Systems Corporation
8 Sequent Computer Systems, Inc.
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Figure 1. Linear array connection, [17].

i. e., P, and Py have only one neighbor and so only one line is connected to each

one of them. Figure 1 exemplifies this network for N = 6

2) Two-Dimensional Array. Here the processors are arranged in a 2-D array
of N1/2 by N1/2 elements. The processor in row ¢ and column j, called P, j, is
connected to its neighbors: P;_; j, Piy1,j, Pi,j—1 and P; j4+1. The processors located
on the extreme rows and/or columns will have only two or three neighbors. Figure 2

exemplifies this network for N =3

COLUMN -
NUMBER 0 1 2 3
ROW 0 | roo) P(0.1) PO.2) P03
NUMBER
1 | POy P(1.1) P(1.2) P(1.3}
2 { P20) P{2.1) P2.2) P(2.3)
3 | P30y P(3.1) P(1.2} PR.3)

Figure 2. Two-dimensional array connection, [17}.

3) Cube Connection. Here the total number of processors is N = 27, where q
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1S an_rinteger greater or equal to one. Each processor is connected to ¢ others so
as to form a q-dimensional cube or hypercube. The neighbors of P;, say P;, are
obtained as follows: the binary representation of j with ¢ bits is obtained from the
binary representation, also with ¢ bits, of : differing only in one single bit. Figure 3
_exemplifies the hypercube network for ¢ = 0,1,2, and 3. For the processors that
are not connected directly, communication is done via its neighbors. In this case

it will take at most q steps for a processor to communicate with another.

Puio P
P, Py Py
P P ‘
q:O 010 on
P\oo P101
Py Py P Por
q=1 q=‘2 Pooo Pocn
q=3

Figure 3. Cube connection: ¢ = 0,1,2, and 3, [8].

4) Tree Connection. Here the processors are arranged as the nodes of a com-
plete binary tree. Thus, if the tree has d levels then the number of nodes is
N = 2¢ _ 1. Fach node in the tree is a processor. Each processor in level 7 is con-
nected to its parent at level : + 1 and to its two children at level : — 1. Evidently,
the processor in the root is connected only to its children and the processors in the

leaves are connected only to their parents. Figure 4 exemplifies this network for

d=4.

There is a wide variety of possible interconnection networks. The above are
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RQOT ' LEVEL 3

Py Py LEVEL 2
P4 Ps Ps P, LEVEL 1
LEAVES p8 PQ P10 PH P12 P\J pM p15 LEVEL 0

Figure 4. Tree connection, [17].

just a sample. The choice of which one of them to use depends on the application,

the number of available processors, the computations themselves and the desired

speed-up.

The number of processors in Interconnection Networks computers is typically
much higher than in Shared Memory computers. Some examples of the former are:
Caltech Hypercube(cube connected with ¢ = 6, 1. e., 64 processors), Intel iPSC °
(cube connected with ¢ = 5,6 or 7, i. e., 32,64 or 128 processors, and Connection

Machine 10 (cube connected, containing 65,536 processors).

2.2.3. SISD Model

This model consists of one single processor that receives a single stream of

operations which modify a single stream of data, Figure 5.

The control sends an instruction to be executed, i. e., an arithmetic operation,

% Intel Corporation
10 Thinking Machine, Inc.
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PO

CONTROL INSTAUCTION PROCESSOR OATA MEMORY
STREAM STREAM

Figure 5. SISD computer, [17].

on a specific datum that is stored in memory. No parallelism is possible in this
model, since it contains one processor only. Most conventional computers fall into

this category.

2.2.4. MISD Model

In this model, N processors perform different streams of instructions on the

same stream of data, Figure 6.

PROCESSOR INSTRUCTION CONTROL
1 STREAM 1 1
PROCESSOR INSTRUCTION CONTROL
2 STREAM 2 2
MEMORY DATA
STREAM
. .
. .
L J
PROCESSCR INSTRUCTION CONTROL
N STREAM N N

Figure 6. MISD computer, [17}.

This computer architecture is useful when the same data is to be used for

several different computations. An example of the kind of problem that is amenable
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to efficient solution in a MISD computer is that of determining if a number is prime
[17]. In this case, each processor divides the number by a possible divisor (any
number between 1 and the number itself), issuing a flag in case it succeeds and
thereby stopping the process. The class of problems that can be solved efficiently in
MISD computers is very limited. The main disadvantage of these machines is the
fact that the data cannot be modified by the processors. This is a very stringent

limitation in many fields of application.
2.2.5. SIMD Model

The computers classified under the SIMD model contain N processors. Each
processor contains its own local memory, where programs and data are stored. All
processors operate under the same control unit, which issues the same instruction
to all of them to be performed on a different data set. In this model all processors

operate synchronously, Figure 7.

The level of complexity of the data, as well as the instructions to be executed
in a SIMD computer may vary widely, from a single number to a list of strings and
from an arthimetic operation to a complete program. In many applications, partial
results obtained during the execution by the differcnt processors may need to be
exchanged among them. In this model, the communication among processors is
achieved in one of two ways: through a shared memory (section 2.2.1) or through
an interconnection network (section 2.2.2). Even though the SIMD model can
be applied to a broader range of problems than the preceding models 1t still 1s
limited to those which can be subdivided into identical subproblems. An example
of the SIMD concept can be found on the vector unit of a CRAY, in which the same
operation is to be performed on all components of a vector concurrently. Another
example of a SIMD model is the GF-11 of IBM, a spccial purpose computer which

has 576 processors (including 64 backup processors). Communications are done
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SHARED MEMORY
OR
INTERCONNECTION NETWORK

DATA DATA DATA
STREAM STREAM STREAM
1 2 N
PROCESSOR PROCESSOR PROCESSOR
' 2 s o @ N ]
INSTRUCTION
STREAM
CONTROL

Figure 7. SIMD computer, [17].

via an interconnect network. Some additional flexibility is achieved by using local

registers to control the behavior of each processor.
2.2.6. MIMD Model

The MIMD model concerns N processors, N streams of instruction and N
streams of data. This architecture enables all problems to be solved in parallel, as
long as parallelism exists in the application. Thus, it is a general purpose architec-

ture. Figure 8 shows a schematic of a MIMD computer.

Each processor has its own control, arithmetic and logic units, as well as a local
memory. Each control unit issues its own stream of instructions to its respective

processor. All processors can execute independent programs concurrently. As in
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SHARED MEMORY

INTERCONNECTION NETWORK

OR

DATA DATA DATA
STREAM STREAM STREAM
1 2 N
¥
PROCESSOR PROCESSOR L R PROCESSOR

1 2 N
INSTRUCTION INSTRUCTION INSTRUCTION
STREAM STREAM ) SL{'RE/?M
1 2 N

CONTROL CONTROL CONTROL
1 2 e o O N

Figure 8. MIMD computer, [17].

the case of the SIMD model, the communication between processors is achleved

through a shared memory (section 2.2.1) as well as through an interconnection

network (section 2.2.2).

The MIMD class of computers represent the most general and, powerful model
of parallel computers. Here the problems to be solved are in general asynchronous,
which means that all processors are executing independent tasks simultancously.
Initially, all processors are free and the parallel algorithm starts to be executed
by an arbitrarily chosen processor, whichr creates the tasks to be performed. Once
a task is created it is assigned to a free processor (a processor is freed when it

completes the execution of a task).
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process stands by until a free processor becomes available. It is important to note
that the idle time of processors depends very much on the way the problem is
implemented, since as long as there is a free processor and a task to be performed

no time is "wasted”.

Most parallel computers currently in the market are MIMD models. Some
examples of MIMD machines are: Alliant FX8 (with up to 8 processors), Denelcor

HEP (with up to 50 processors) and Intel iPSC (with up to 128 processors).
2.3. Parallel Computers

In this section some recently developed parallel computers are discussed. Spe-
cial attention is devoted to the description of the Alliant FX8 computer, where

most of the simulations discussed in the sequel were conducted.
IBM/NYU Ultracomputer [8,18]

IBM/NYU Ultracomputer is a research project at New York University. The
design of the Ultracomputer approximates a paracomputer (a multi processor in
which multiple accesses to the same memory location are served in the same time
required for a single access) by using message-éxvitching network connected to a
central shared memory. It is an example of a parallel computer whose memory is
reconfigurable between global and local. The initial configuration, the RP3, has

512 processors, with the peak processing power of about 500 Mflops.
Connection Machine CM-2 [18]

The Connection Machine is designed by Thinking Machine Inc. It is a mas-
sively parallel architecture. It has 65,536 processors. It is an example of a SIMD

machine and it has been extensively used for Artificial Intelligence applications.
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It consists of two parts: a front end machine and a hypercube of 64k processors.
Single data instructions are executed by the front end, while the CM executes large

data items.
Intel iPSC [19]

The Intel iPSC is an example of MIMD machine. It is based on the CalTech’s
Cosmic Cubic Design. It was the first commercial computer using an intercon-
nection network of the hypercube type. In present models, it offers up to 128
processors. The individual processors have up to 512Kb of memory, and the con-
nections are provided by a high speed Ethernet. It also has an intermediate host
machine (Intel 310), which serves as both the control processor and the user inter-

face running UNIX.
Intel iPSC/2 [8]

The iPSC/2 is the current version of the iPSC, which represents significant
advances over the original iPSC. Each node of the iPSC/2 is a functionally complete
computer with its own processor, memory and communication facilities. The node
processor on the iPSC/2 is a four-MIPS Intel 80386 processor. Each individual
node can have up to 8§ MBytes of memory, and the communication i1s done via
a Direct-Connect routing module (DCM) on each node. The problem of passing

meésage to distant processors, is solved cfficiently by the DCM.
Sequent Balance {20]

The Balance system is a MIMD maultiprocessor (another name for shared mem-
ory machines). The Balance CPUs are identical general purpose, 32-bit micropro-
cessors. All processors share a single pool of memory. Also, all processors, memory

modules, and I/O controllers plug into a single high-speed bus. The scheduling for
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the processors is done automatically by themselves, to ensure that all processors
are kept busy as long as there are executable processes available. The Balance
systems are available in two models, the Balance 8000, with 2 to 12 processors,
and the Balance 21000, with 4 to 30 processors. Both Balance modelé can be con-
figured with 4 to 28 Mbytes of memory and provide 16 Mbytes of virtual address

épace per processor.
Alliant FX8 [8,21,22]

The Alliant FX8 is an MIMD machine with shared memory. Its basic approach
to parallel processing is to use hardware for the scheduling and synchronization of
the multiple processors and to develop compilers that automatically break up pro-
grams into those parts that can be vectorized and those that must run in scalar
form. The Alliant architecture is based on two distinct, but interconnected, re-

source classes:

e The interactive processors (IP’s) comprise an expandable pool of computers
that execute interactive user jobs and the operating system in parallel with

each other and with the computational complex (the second resource class).

o The computational complez introduces the Alliant concurrency, which groups
up to 8 processors, called computational elements (CEs), in a complex. Each
CE is a 4450 - KWhetstone (32-bit) general purpose microprogrammed com-
puter with an integrated vector instruction set. Each CE delivers 11.8 MFLOPs

peak performance (32-bit).

Concurrency initiation, synchronization, and suspension are accomplished by
the Concurrency Control Unit (CCU) in each CE and an interconnecting Concur-
rency Control Bus. The Concurrency Control Bus provides a high-speed commu-

nication path betwecen CCUs that is independent of program data and instructions
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paths. The (CCU) is an 8000-gate CMOS gate array that connects the CEs of
a complex. The CCU controls Alliant concurrency and assures high parallel pro-
cessing efficiency. The CCU interfaces with the instruction unit of a CE and up
to seven other CCUs to control up to eight CEs running concurrently. Because
it is the hardware that performs the scheduling and synchfonization of multiple
CEs in the computational complex, the performance speed-up delivered to a single

application approachs the number of CEs installed.

CONCURRENCY
CONTROL
BUS

(with permission of Alliant Computer Systems)

Figure 9. Alliant architecture, [8].

The Concentrix operating system is an implementation of the Berkeley 4.2
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UNIX operatingrsystem. Concentrix supports parallel processing without pro-
grammer or operator intervention. The system manages two types of processes
and dynamically schedules jobs on available processors as long as work remains.
Compute-intensive jobs take priority on the computational complex; interactive
user jobs, input/output, and other operating system activities are scheduled for
any available IP or otherwise idle computational complex. Figure 9 shows a sketch

of the Alliant architecture.

The software optimization is done at compilation time by turning on/off the
optimization options. The optimizations available are: concurrency, vectorization
and global optimization (done by the machine to avoid “unecessary” operations

that might exist in the code).
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CHAPTER III

Survey of Parallel Algorithms

AKl [1] defines a parallel algorithm as a solution method for a given prob-
lem destined to be performed on a parallel computer. In [2] Noor defines vector
computations as simultancous processing of several independent data streams on a
single processor, and parallel computations as simultaneous processing of indepen-
dent streams of data on multiple processors. The main difference between these
two modes of computations is their CPU performance compared with the scalar
mode. While vector processing can significantly reduce CPU time, parallel pro-

cessing increases CPU time (due to overhead)}, but reduces the wall-clock time.

In computational mechanics a prominent role is played by the finite clement
method. Several avenues for parallelizing this method have been proposcd. In [3]
- an array of systolic processors for doing finite element calculations is presented.
Systolic arrays are a network of very simple processors, which operate in parallel
and are usually designed as special purpose systemns (sce Section 2.1). In this
systolic array there is one processor allocated for each node of the finite clement
mesh. Each processor maintains one row of the coefficient matrix either in clement
or global form. Connectivity and data flow between processors is dictated by the
connectivity of the nodes in the finite element mesh and can be gencrated as the

element connectivity is defined.

In a more abstract scnse, different approaches to the parallelization of the

finite clement method have been considered [4]:

_ 98 —



Subdomain splitting. Tt is based in the "divide and conquer” technique. Here,
the task to be performed is divided into subtasks that arc either independent
or loosely coupled (to reduce the extent of communication among processors).
The idea is one of domain (or spatial) decomposition, i. e., the domain is
divided into regions (that can even overlap). The problem is then decomposed
into the solution of boundary value problems in the subdomains. Since the data
on the interface of the subdomains is not known an iterative solution procedure
is necessary. In [5] Rodrigue considers two methods of decomposition: one in
which the decomposition is made without regard to the partial differential
equations being solved and the another in which the decomposition is made

according to the heuristics of the solution of the partial differential equation.

Substructuring. This concept is closcly related to that of subdomain splitting.
It can also be identified at the algebraic level with partitioning of the system
matrices. To achieve a perfectly balanced workload distribution is gencrally an
intractable combinatorial optimization problem. In [G] Flower et al. propose
a satisfactory approximate solution for this problem by means of an analogy

to the phenomenon of annealing in solids.

Operator splitting. Splitting provides a gencralization of substructuring. Split-
ting strategies can be developed in a variety ways. One example 1s the method
of alternating directions [7], whereby a multidimensional problem is reduced
into a series of one-dimensional problems. Another example is provided by the

method of fractional steps [8].

Element-by-element strategies. In finite element calculations, global arrays
are assembled from element contributions. This modular characteristic of the
method can be taken as a basis for the formulation of splitting schemes in whi_ch

the elements in the mesh are trcated scquentially [9]. Although the method
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considerably reduces the storage requirements with respect to implicit algo-
rithms, its inherently sequential nature renders it of limited value for parallel

computing.

In large scale nonlinear analyses, the most costly phase of the computations
is the repeated solution of systems linear algebraic equations. Considerable re-
search is presently being devoted to the development of parallel equation solvers.
In Section 3.1 some direct and iterative techniques that have been exploited are
presented. For transient problems, several techniques have been proposed for the
integration of the equations of evolution which broadly fall into two categories: ex-
plicit and implicit methods. In Section 3.2 the tradeoff between explicit or implicit

schemes is discussed.
3.1. Equation Solvers

In many finite element applications, the solution phase is responsible for a
large fraction of the execution times. Whereas the element computations can be
easily performed in parallel, since they constitute independent operations, equation
solvers are not trivially parallelizable. The systems of equations arising in the

7 displacement method are of the form

Ku=f (3.1)

where K is the stiffness matrix, u is the vector of nodal displacements, and f is
the vector of effective nodal forces. In nonlinear applications solved by means of
the Newton-Raphson mecthod, K is the tangent stiffness matrix, u is the vector of

increment of nodal displacements, and f is the vector of residual forces.

Methods to solve (3.1) based on the direct factorization of the matrix K arc

called direct methods. Iterative solvers constitute the other main solution strat-
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egy ;ind have bcén applied since the carly 60s [10]. A typical iterative method
involves the inital selection of an approximation u(® to u, and the determination
of a sequence u¥, u® u® .. such that the limi—c u® = u. Iterative solvers
typicguy require considerable less storage than direct solvers. In terms of perfor-
mance, direct methods of solution are generally fastéritrhra!rrlriterative methods and
have been preferred for use on sequential machines. However, because of the paral-
lelism inherent in iterative solvers, since the advent of parallel and vector computers

methods like precbnditioned conjugate gradients, successive overrelaxation (SOR),

Gauss-Seidel, and point Jacobi’s have elicited renewed attention.
3.1.1. Iterative Methods
Consider the following system of linecar equations

Ax=b (3.2)

where A is an nxn cocficient matrix, x is the solution vector with n components
and b is a given column vector also with n components. Widely used iterative
methods [11] to solve a system like (3.2) arc: Point Jacobi, Gauss Secidel and
Successive Overrelaxation methods. The solution vector exists and is unique if and
1

only if A is nonsingular, i. e., A™" exists, since

x=A"'b | (3.3)

From here on it is assumed that the matrix A is nonsingular and furthermore that

its diagonal terms, i. e., a,; are all nonzero. This matrix can be decomposed as

A=D-L-U (3.4)
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where, D, L and U are respectively diagonal, lower triangular and upper triangular

matrices. Their respective elements are:
dii = aii, dij =0fori#
li; = —ai; fori> j, and l;; =0 for: <y (3.5)

uij = —aij for i < j, and ujj =0for i >
Using (3.4), equation (3.2) can be rewritten as

Dx = (L + U)x +b. (3.6)

The point Jacobi method is defined by the recurrence relation
Dx(™*) = (L + U)x{™ +b, m>0. (3.7)
Since the elements in the diagonal of A are nonzero, D is nonsingular, and (3.7)
can be rewritten as
xm*tD) =D YL 4+ U)x™ + D™ 'b, m >0. (3.8)

The matrix J = D~Y(L + U) is called point Jacobi matrix associated with the

matrix A.

One of the disadvantages of this method is that all the components of x(m)
need to be saved while computing x(™*+1). A way of avoiding this shortcoming is

by taking advantage of how the matrices D, L and U are formed, 1. ¢,

i—1 n
a,-i:t:(m“) = — Zaij$§m+l) - E aij:cgm) + b,‘, 1 _<_ ? _<_ n, m Z 0. (39)
1=1 j=i+1

In matrix notation (3.9) can be translated into,

(D — L)x(™+D = Ux(™ + b, (3.10)
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Since the lower triangular matrix (D — L) is nonsigular (3.10) can finally be rewrit-

ten as

This iterative method is the point Gauss-Seidel method and the point Gauss-

Seidel matrix associated with matrix A is defined as G = (D — Ly 'u.

An alternative iterative method is the SOR (Successive Overrelaxation

method). To derive it, dcfine first the auxiliary vector itcrates x(m)

Then, the method is defined as

x(m+1) = x(m) 4 w[i(m%-l) _ x(m)] =(1- w)x("’) + u.i(mﬂ), (3.13)

where w is the relaxation factor. From (3.13) one can verify that x(m+1) is a
weighted mean of x(™ and %(™*D. When w > 1 the weight is an overrelax-
ation weight, otherwise it is an underrelaxation weight. Putting (3.12) and (3.13)

together the following relation is derived:

(D - wL)x(™+) = {(1 - w)D + wU]x™ + wb. (3.14)

Note that D — wL is nonsingular for any w, and thus, the final form of the SOR

method can be written as

x(m+D) = (D — wL)'[(1 —w)D + wUx™ 4 w(D - wLl) 'b. (3.15)
The matrix R = (D — wL) ™' [(1 — w)D + wU]J is called the point successive relax-
ation matrix. Equation (3.15) can be rewritten in the form

X(m+l) — x(m) + wD—l(b _ Lx(m-H) _ Ux(m) _ Dx(m)) (316)
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A more elaborate iterative procedure is the preconditioned conjugate gra-
dient (PCG) mcthod. The PCG is an extension of the conjugate gradient method,
which is an extension of the method of the steepest descent. The latter is based in

the following [12]:

Let f have a continuous first partial derivative. The gradient vector of
fis g(x) = VE(x)T, or simply gx. The method of steepest descent, for

minimizing a function, is defined by the iterative algorithm

Xit1 = Xk — Qk8k, (3.17)

where ay is a nonegative scalar minimizing f(xx — agx). That is, from
the point X, it searches along the direction of the negative gradicnt —gx

to a minimum point on this line; this minimum point is taken to be Xk41-

The first step in the conjugate gradient method is identical to a step descent
method; each succeeding step moves in a direction that is linear combination of

the current gradient and the preceding direction vector [12]:

Given an approximation solution X to x, define

do = —go = b — Axq, (318)

and at each iteration % define the method as

Xi41 = Xk +Cl‘kdk (310)
T

= Bk 3.20

= AT Ad, (3.20)

diy1 = —8r+1 + Brdr (3.21)
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B = iy Adi
* T TdTAd,

(3.22)

The conjugate gradient method can be improved by way of preconditioning.
This technique consists of splitting the coefficient matrix in a form: A =M - N,
such that the system: Mx = b is computationally inexpensive compared to the
original system. When M~! = A~! the iteration converges in one step. The
closer M~! is to A~!, the faster the convergence of the method. A discussion of

preconditioning strategies may be found in [13].

The implementation of the aforementioned iterative methods in parallel com-
puters has received much attention. Adams in [14] shows how to reorder the compu-
tations in the SOR algorithm to maintain the same asymptotic rate of convergence
as the row-wise ordering and to obtain parallelism at different levels. Two major
problems are introduced when this reordering is performed: it is unlikely that an
ordering can be develbped that is best for every new parallel machine, and also

reordering computations can change the mathematical properties of the algorithm.

Discretizing an elliptical partial differential equation on a regular domain of
9-point stencil as in Figure 1 gives rise to a system of linear equations of the type

(3.2).

X X X X X X X X X X

X 00 00 Q0 O 0 0O X
N1y

X 0 0 0-0-0 0 0 O X
VRS

X 0 0 000 0 0 0 O X

X X X X X X X X X X

Figure 1. Discretized domain, [14]
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For simplicity, one unknown per node is considered here. An "ordering” means
that the nodes must be updated sequentially. The first step of this method is to
order the unknowns at the nodes to indicate which nodes must be updated before
the others. Using the multi-color SOR method [15] so that the nodes of same color
are updated simultaneously the desired parallelism is created. There are several
possible multi-color orderings, with probably differing rates of convergence. To aid
the choice of an ordering, one imposes that the new ordering must have the same
rate of convergence as the row-wise ordering of the domain. The row-wise ordering
is shown in Figure 2, which indicates that a node may not be updated at iteration

k + 1 until all the nodes in the stencil to the left and below are updated.

Figure 2. Stencil rule for row-wise ordering, [14]

A systematic procedure to find the 4-color ordering for this stencil with the
same rate of convergence as that of the row-wise ordering is given in [16]. The basic
idea is to apply the stencil rule given in Figure 2 to the grid in Figure 1, but allowing
the nodes to be updated on subsequent iterations as soon as the appropriate data
is available. Figure 3 shows the scquence of update times for each node. The three
sets are each in a different iteration of the SOR method. In a parallel computer
the update is performed by color, i. e., first all R nodes are updated, followed by

the B nodes, the G nodes and finally the O nodes.
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5.9 6,10 7.1 8.12 10 1! 12
G O R B G o R B
3711 4812} 59 6.10 7.11 8.12 9 10
R B G o R B G o
1.5,9 2610 3711 481021 59 6.10 7.1 8,12

Figure 3. R/B/G/O coloring and ordering, [14]

In [17] Doi et al propose parallel processing and pre-processing algorithms for
the solution of partial differential equations by the finite element method. In the
solution phase a parallel SOR method is proposed, given by

i+1

j=1—1

where i = 1,...,n and k = 1,2,... The parallel processing system considered pos-

sesses the following attributes:

(1) It consists of n slave processors SP; (¢ = 1,...n) with identical performances

and a master processor M P, which controls the slave processors.

(2) The n SP’s constitute an one dimensional array, i. e., each processor SP; can
access the shared memory SM; and SM;_;, which are the shared memories of

processor SP; and SP;_; respectively.
(3) Each SP; has a local memory LM; that allows it to run its own program.
(4) MP can access any of the SM’s.

In the calculation of (3.23), SP; uses z;_1,; and Ti}1. In order for SP; to be able

to take in all the data needed in the calculation directly from SM;—y, SM; and LA,
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without any data transfer, r; is assigned to both SM;_, and SAL;. The convergence

decision for iteration m is made by M P while the SP’s perform iteration m + 1.

An algorithm for solving (3.2) using iterative methods that requires one single
matrix-vector multiplication per iteration is presented by Melhem in [18]. This
product is performed using the unassembled elemental arrays, therefore eliminating
the need for the irregular assembly stage. More specifically, the product of the
matrix A with any vector p can be done as

Ap = zn: MT A*M®p = zn: Me<T Ac p¢, (3.24)

e=1 e=1

where M€ is a Boolean matrix for each element, such that M§; = 1 if the global
numbering of node i in element e is equal to j. The partial products Ac p¢
for e = 1,2,...,n may be pipelined at the same rate at which the arrays A€ are

generated.

Seager in [13] studies a standard PCG algorithm for the solution of symmetric
linear systems in the context of multi-processing. The expensive operation, as
noted above, is the matrix-vector product. This computation may be decomposed
into concurrent tasks, each responsible for calculating a diffcrent part of the vectors
x, d and g. In this way cach processor performs part of the matrix-vector multiply.

These vectors are partitioned so that vectorization 1s not detrimentally affected.

In [19] Nour-Omid et al. propose a method based on partitioning the mesh
into substructures. The nodes of each substructure are subdivided into interior
nodes and interface nodes. The latter are the nodes shared by more than onc sub-
structure. While the interior nodes are climinated by means of direct factorization,
(section 3.1.2), the interface nodes are solved for by means of a preconditioned

conjugate gradient iteration. The choice of a direct method for solving the interior
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nodés can be justified by the fact that, for small systems, direct methods are more
efficient than iterative methods. The resulting system of equations resulting after
the elimination of the interior nodes is of the form
P P
[>° LT R LO} u, = > LOTHED, (3.25)
i=1 i=1
where, L{) is the localization operator that maps the nodal displacements within
a substructure (ugi)) to the global nodal displacement (u,). i.e., ul? = LY u,,
p is the number of substructures, I—{(,i) is the reduced stiffness matrix and finally
£ is the reduced force vector. A PCG method is used to solve (3.25). At each
iteration of the PCG algorithm the product of the matrix in (3.25) and a vector
d is evaluated (equations (3.20) and (3.22)). Using the definition of the coefficient
matrix such product can be written as
P
he =Y LOTKY LY dq (3.26)
i=1
The cost of computing this product dominates the total cost of the PCG method.
Concurrency can be achieved here by computing cach term in this sum scparately.
First, d is localized to each processor by means of the localization operator (L(Y).
Then, the product of K and the localization of d to the ith substructure is
computed. Although computing the product by this means may be two or three
times slower than a direct calculation, the gains afforded by concurrency tend to

dominate provided that the number of processors is high enough.

In [10] Biffle adapts the nonlinear conjugate gradient algorithm to concurrent
vector processing computers, while striving to preserve the vector processing speed
of the algorithm. The cfficiency of the conjugate gradient iteration depends crit-

ically on the cost of calculating the residual. The method used to perform the
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residual calculation is highly vectorizable. To accomplish multitasking while pre-
serving vectorization, the following data structure is used. The size of each block
of elements is increased to 1024 elements. When a processor becomes available it
is given 64 elements for which to calculate their residual forces. Giving a processor
64 elements allows the processor to run in vector speed. If another processor be-
comes available, then the next available block of 64 elements is processed. When
all the residual forces are calculated for the 1024 elements, then one of the proces-
sors performs the accumulation of the element residual forces into a residual force

vector.
3.1.2. Direct Methods

The most basic direct method to solve symmetric systems of n linear equations
is the Gaussian elimination followed by backsubstitution. The Gaussian elimination
method consists in reducing (factorizing) the given system of equation to one in
which the coefficients matrix is an upper triangular matriﬁc. Once this simplified
system of equations is obtained the solution can be found very straightforwardly.
First the nth component of the solution vector is computer, followed by the (n—1)th

component and so on, until all of them are computed.

Another widely known and used method for factorizing the cocflicient matrix
is the Cholesky method, which is a symmetric variant of the Gaussian climination
tailored to symmetric positive definite matrices [20]. Considering the system of
equations given in (3.2). Applying Cholesky’s method to A yiclds the triangular
factorization

A=LLT, (3.27)

where L is a lower triangular matrix with positive diagonal terms. (3.2) can then
be rewritten as

LL"x = b, (3.28)



and substituting y = LTx, onc can obtain x, by solving

Ly=b and LTx=y. (3.29)

It should be pointed out that to solve the first system of equations in (3.29), one
should use forward substitution, i. c., the 1st component of y is computed first,

followed by the second and so on until all the n components arc known.

Another way of factorizing matrix A 1s

A =LDL” (3.30)

where L is a lower triangular matrix and D is a diagonal matrix. In this case,

substituting y = DLTx, the solution vector x is obtained by soving

Ly=b and DLTx =y. (3.31)

A very used factorization for the direct solution of systems of equations is the
LU decomposition, i. €.,

A =LU, (3.32)

where L and U are lower and upper triangular matrices, respectively. Following the
same idea as the methods above, one substitutes y = Ux, and obtain the solution
by

Ly=b and Ux=yY. (3.33)

In [18] Melhem presents a parallel direct solver for the system of equations
(3.2). The factorization is done using LU decomposition. A frontal technique to
allow both the asssembly and factorization stages to be performed in parallel and

also to minimize the storage requirement in the assembly phase is developed. In
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most of the parallel schemes for direct solution of (3.2), the rows of A have to
be processed in sequential order. This restriction is satisfied by assigning appro-
priate global labels to the nodes. The interaction between the assembly and the
factorization phases allows automatically the knowledge of when a row is ready to
be passed to the factorization phase, eliminating the preprocessing step. It is also
shown that the bandwidth of the resulting matrix (after the numbering process) is

comparable with the best known algorithm for minimizing the bandwidth.

Among the features presented by Law [21] to parallelize the finite element
method, is that of performing the solution phase of the method concurrently. There,

a systolic array (see chapter II) is developed for performing the LU decomposition.

Farhat [22] develops a computer program architecture for the solution of finite
element systems using concurrent processing. The basic approach involves the
automatic creation of substructures. The algorithm, then, consists of solving each
substructure problem independently using LTDL factorization and the solution
for the equations corresponding to the interface nodes (nodes that belong to more
than one substructure) is obtained by means of the Gaussian elimination method,

which possesses inherent parallelism.

In [23] Johnsson presents three classes of concurrent elimination algorithms for
the solution of banded systems of equations. One class exploits the independence
of a single variable from the system of equations, another the independence of the
data sets for the elimination of different variables and the third is a combination

of the other two.

The tradcoffs between parallclization and vectorization are assessed in [24]. For
the LU factorization a method is presented that talkes advantage of both parallel

and vector capabilities of the parallel computer Alliant FX8 (sce chapter II for
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details). The classical LU decomposition consists mainly of dot products. The
proposed algorithm decomposes the cocfficients matrix A into its lower and upper

triangular components, which can be written as
AL A _ |1 0 U Up,
A= [Azl Azz}_ [Lzl 1| lo B | (3:34)
where all the submatrices are kxk matrices. The first step of the algorithm is

Ay — AT, La = AnAn, B = A —LaApn. (3.35)

The above operations are then performed recursively on the smaller matrix B.
This block LU algorithm consists mainly of matrix-matrix operations. To invert
the kxk blocks the classical LU factorization of Ay, is used. The computation of
the inverse of the original matrix is thus avoided. Unfortunately, this block LU is

more expensive by a factor of (1 + 2k?/n?) than the classical LU factorization.
3.2. Time Stepping Algorithms
The equations of motion governing linear structural systems are of the form

Md + Cd + Kd = f, (3.30)

where K is the stiffness matrix, M is the mass matrix, C 1s the damping matrix,
f is the vector of applied discretized loads, and d and d are the vectors of nodal
accelerations and displacements, respectively. A superimposed dot represents dif-
ferentiation with respect to time. If an initial condition is given, equation (3.36)
can be integrated to produce the time history of the responsc of the structure.
Integration methods are usually categorized into two groups: explicit and implicit.
Explicit schemes use initial data only to update the solution and do not require

the solution of global systems of cquations, in contrast to implicit mncthods. The

— 43 -



advantages and disadvantages of both classes of algorithms have been summarized

by Belytschko as follows:

Advantages(+) and disadvantages(-) of explicit schemes:
+ Simplicity.
+ Accuracy for large systems is assured if the time step (At) is stable.

+ No global stiffness matrix needs to be formed or factorized. Saves

storage.
- Conditionally stable.
Advantages(+) and disadvantages(-) of implicit schemes:
+ Unconditionally stable.
— Complex algorithm with low reliability in nonlinear situations.
— Accuracy can deteriorate in semi-implicit algorithms.

— Newton form has large storage requirements.

Implicit/explicit partition methods [25] are an attempt to combine the best
attributes of both classes of algorithms. In nodally based methods [25], the mesh is
partioned in three sets: explicit, implicit and interface. In element based methods,
the elements are segregated into two sets: implicit and explicit [26]. At cach time
step, the explicit subset is integrated first. The results f:rom this step are then used

as boundary conditions for the integration of the implicit subsct.

The most widely used direct time-stepping methods are the Newmark family,
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which is defined:

Mart+l + Cvn+l + Kdn+l — In+41 (337)

At?
dn+l = dn + Atv, + T{(l—gj)aﬂ + 2,3&,1+1] (338)
Va1l = Vp + At[(1_7)aﬁ + 7an+l] (339)

where d,., vn and a,, are the approximations of d(t,), a(tn), and a(tn), respectively.
The parameters 3 and v determine both the accuracy and the stability of the
specific algorithm being considered. Equations (3.37), (3.33) and (3.39) can be
viewed as a system of equations in the unknowns dnt1,Va+1, and anss. The
values of d,;, Vn, and a, are assumed known from the previous time step. Some

properties of selected members of the Newmark family are [27]:

1. Ceniral differences. In this scheme the parameters 3 and vy are respectively:
0 and 1/2. This leads to the following expressions for the algorithm for the

displacements and velocities:

2

dn+1 = dn + Atvn + Tan (340)
At
Va4l = Vn + _:Z_[an + an+l] (341)

This is an ezplicit method if both M and C are diagonal matrices. It is second

order accurate and conditionally stable.

2. Trapezoidal Rule. Here the parameters § and v are respectively: 1/4 and 1/2,
which yields to the following expressions for the displacement:

t2

d,,+1 = d,l + Atvn + [a,, + an+1] (342)

This is an implicit method, and it is unconditionally stable. As for the central

difference scheme, the trapezoidal rule is second order accurate.
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3. Linear acceleration method. The parameters in this scheme are: § = 1/6 and
~v = 1/2. The expression for the velocities remains as above, whereas the

displacements are given by

At? 2 1
dot1 = dn + Atvy + —‘)—[gan + §8n+1] (3.43)

This is an implicit method, but it is not unconditionally stable. It is also a

second order accurate method.

One of the earliest works in the area of concurrent time step integration al-
gorithms is that of Noor and Lambiotte [28], in 1978. The CDC Star-100 is the
architecture considered there. In this work both the central difference scheme and
Newmark implicit schemes were implemented in parallel. In [29] Belytschko and
Gilbertsen present a concurrent explicit time integration algorithm for the non-
linear equations of motion in structural dynamics. The essential feature in their
implementation is that it allows the use of different time steps on different parts of
the mesh. The explicit scheme chosen is central differences. To maximize the ben-
efits of vectorization and concurrency, the elements are grouped to obtain vector
~ lengths appropriate for vectorization. Each element group can then be integrated
with a different time step. The nodal velocities and displacements are computed
when all groups reach tas¢, which is the master time. The groups of clements are

integrated concurrently and within each group the computations are vectorized.

Flanagan and Taylor [30] have proposed a concurrent explicit time integration

algorithm. The main task to be performed during cach time step arc identified as:
1. Update stresses and assemble external forces.

2. Assemble external forces.
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3. Apply kinematic constrains.
4. Update kinematics via lumped mass matrix.

Most of the effort (= 75-80%) is spent in the first of these tasks. The method

proposed subdivides the stress update into the following subtasks,
1. Uncouple-extract nodal kinematics.
2. Update element internal state.
3. Calculate element nodal force contribution.
4. Couple-assemble nodal forces.

The coupling and uncoupling operations cannot be performed concurrently, and

involve gather/scatter steps based on the element connectivity table.

Ortiz and Nour-Omid [31] have advanced a method which shares some of
the attributes with both implicit and explicit schemes. The method starts by
partitioning the structure into element groups. Each one of these groups is treated
implicitly, while the collection of groups is treated explicitly. Details of this method

are amplified in chapter IV.
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CHAPTER IV

Group Implicit Algorithms

The concept of Group Implicit (GI) algorithm was introduced by Ortiz and
Nour-Omid [1] in 1985. In essence, these algorithms are constructed by partition-
ing the finite element mesh into groups of elements, and processing each group
implicitly and independently over a time step. This last feature introduces the
desired concurrency into the computations. The requisite compatibility between
the subdomains is enforced a posteriori, by means of a mass averaging rule. We
show that the resulting algorithms have ranges of unconditional stability similar to
those of globally implicit methods. Guidelines are given for choosing the time steps

so that accuracy does not deteriorate as the number of element groups is increased.

The appeal of GI algorithms is twofold. Firstly, they are highly parallelizable,
with interprocessor communications limited to the exchange of one interface vector
per time step. Secondly, they speed up the computations by reducing the equation
solving effort, even on a single-processor machine. This is so because, as the sub-
domains are reduced, the bandwidths of the local arrays decrease steadily. Fill-in
by off-diagonal zeros is consequently diminished as well. The result is a net gain

in efficiency during the factorization phase.

Our numerical simulations have born out these conclusions: by cofirming the
theoretically derived ranges of unconditional stability and accuracy estimates; by

demonstrating the low communication overhead incurred during the computations;
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and by showing how the equation solving effort is diminished well beyond the linear
speed-up expected from concurrency alone. Simulations run on a 32-node hyper-
cube have consistently given cfficiencies over 95% on a varicty of problems. Tests
run on an eight-processor Alliant FX8 have given factorization speed-ups of the
order of 34 in selected applications. In view of these results, it would appear
that GI algorithms hold considerable promise for application in nonlinear struc-
tural dynamics problems, particularly on medium-grained and fine-grained parallel

machines, such as the Alliant and Cray series and the ETA 10 machine.
4.1. Theoretical Basis

Throughout this work we focus on the structural dynamics problem governed
by the semidiscrete equations of motion of the form
Md(t) + G(d(t),d(t)) = f(t),
d(0) = do, (4.1)

d(0) = vo

where, following standard notation, M significs the mass matrix, G and f the
internal and external force vectors, d the displacement vector, dg and vy the initial
displacements and velocities, respectively, and a superimposed dot is used to denote
differentiation with respect to time ¢. The tangent stiffness and damping matrices
of the structure are defined as

K = 8G(d,d)/od,

(4.2)
C = 0G(d,d)/ad,

respectively. In the linear case, K and C are constant and

G(d,d) = Kd + Cd. (4.3)
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The linearized equations of motion can pe written as
Md(t) + ca<£) + Kd(t) = (1),
d(0) = do, (4.4)
d(0) = vo.

These equations can be reduced to their first order correspondents by means of a

change of variables. Introducing

- [85]

equation (4.4) takes the following form

HRIEAREEARE
20)- (2]
d(0) do

In matrix notation the reduced system of equations can be written as

(4.6)

Az(t) + Bz(t) = g(t),

(4.7)
z(0) = zo.

The energy norm corresponding to system (4.7) is defined as

2|l = (2T Az)'/? (4.8)

For instance, for (4.6), the square of the energy norm is twice the total (strain +

kinetic) energy of the system, and hence the name assigned to the norm.

An algorithm for integrating (4.7) is defined as a matrix F(h), or amplification

matriz, such that
Zn+1 = F(h)zn, (49)
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where h is the time stecp and z, is the approximate solution at t, = nh,n =
1,2,3,..., with the property that z,, — 2z(t) as h — 0. For linear systems of
ODE’s, an algorithm is convergent iff it is consistent and stable. Consistency of

the algorithm with the governing equations is defined as the condition that

. Zpn4l — Zn
lim ————

—_ = A1
lim 7 =1z, = —~A7 Bz,. (4.10)

This condition can be rewritten in terms of the amplification matrix by substituting

(4.9) into (4.10), which yields

d -1
[EEF(h)} = —-A7'B. (4.11)

The stability of the algorithm, on the other hand, requires that

IF(h)] <1 (4.12)

where the energy norm of the amplification matrix is defined as

1F Gzl

2] (4.13)

IF(R)] = max

Figure 1. Model.
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A first step in constructing the method is to partition the structure into groups
of elements. The finite element mesh can then be viewed as a collection of discon-
nected subdomains, Figures 1 and 2. The field variables within a generic subdomain

r are fully described in terms of local arrays, such as z".
Figure 2. Partitioned mesh

The eztended variable array z = {z',...,2",...,2°}, where s is the number of sub-
domains, completely describes the structure. Moreover, Z contains the same infor-
mation as z, the global nodal array. The relation between them is given by the

following linear mapping

Zy = LTZ7 (414)

where L, is a Boolean matrix which localizes z to the subdomain r to obtain z,.

In matrix form this operation can be written as

L,
L,

NI
Il

z = Lz. (4.15)
L,
It is readily verified by recourse to the principle of virtual work that



where g and g denote the global force array and the extended force array {g',...,g",
...,g%}. The extended matrices corresponding to z are defined as

Al B!
_ 2 _
A= A y B =

A’ B*

B'Z

The assembly operation for global arrays can then be expressed in the form

A =LTAL,
_ (4.17)
B =L7TBL,

The essential idca of the methods derived here is to allow the various sub-
domains in the partition to evolve independently over one time step, and to re-
store compatibility by somehow projecting the extended solution so obtained onto
a suitably defined compatible solution. Three different methods for constructing

algorithms of this type are given next.
4.1.1. GI Algorithms for First Order Systems

In this section we focus on first order systems of the type (4.7). For simplicity,
we consider the unforced case, g = 0. A general class of parallel algorithms can be

defined as follows:

e Localize initial conditions z, to the subdomains to obtain the extended array

Zn-

¢ Update the extended array by solving the decoupled equations of motion at
the subdomain level
A"z2" +B'z" =0. (4.18)
The extended predictor obtained this way is called 2], 44.
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o The extended predictor information is multivalued at the nodes that belong
to more than one subdomain. The algorithm is then completed by averaging
those values at the interface nodes by means of a suitable averaging rule, so

that consistency is restored.

The amplification matrix for this algorithm is given by

F(h) = PF(h)L, (4.19)

where F(h) = diag(F!(h),...,FT(h),...,F*(h)), F7(h) is the amplification matrix
consistent with equation (4.18) and the matrix P defines a projection form the

space of extended arrays to the subspace of compatible arrays.

The subdomain algorithms F"(h), that constitute the extended algorithm F(h)

in (4.19), must be consistent with the decoupled equations (4.18), i. e.,

=-A"'B. 2
[th(h)] . A™'B (4.20)
Using (4.19) one has

A[%F(h)] =AP{5IEF‘(}1)] L, (4.21)

h=0 h=0

But by the consistency (4.20) of the local algorithms, equation (4.21) may be

rewritten as

A[di (h} = AP(-A"'B)L. (4.22)

On the other hand, using (4.11

A[—d—F(h)] = -B=-LTBL. (4.23)
dh h=0

Comparing (4.22) and (4.23) one concludes that

APA7' =17 (4.24)
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or,

P=A"LTA. (4.25)

From cquation (4.25) it is apparcnt that the sought projection P is a mass averaging

rule on the interface degrees of freedom. This rule can be expressed as

s

Zosr = P2l =AY ATz (4.26)

r=1

Thus, 37, is first to be weighted by the subdomain mass matrix A", the resulting

local vectors assembled into a global array which is finally multiplied by A~T.
4.1.2. Interface Compatibility as a Constraint

In [2], a class of concurrent procedures was obtained by regarding the com-
patibility conditions between subdomains as algebraic constraints operating on the
extended solution array. The effect of these constraints is built into the extended
governing equations by means of Lagrange multipliers. Physically, these represent
the reactions between subdomains. By using splitting techniques, the constraints
are relaxed during each time step, which results in the desired level of concurrency.
Compatibility is enforced a posteriori on the extended predictor. This alternative
" methodology is suggestive of various generalizations of the method discussed in the

preceding section, and is outlined next.

Start by writing (4.7) in the form

A o0 0]z B I o Z g
o o ol|lAl+|I o -L||A|=]0 (4.27)
0 0 0|z o -LT o z 0
or,infull, _ ~
Az+Bz+ A =g
7-Lz=0 (4.28)



The first equation governs the evolution of the decoupled subdomains, the second
is a statement of the compatibility condition, and the third requires that the re-
actions between the subdomains be equilibrated. To obtain a class of concurrent

algorithms, we decompose the evolutionary operator in (4.27) as

B I 0 B oo o I ©
1 o -L|=]o o o|+|I o0 -L (4.29)
o -LT o0 0 0O o -LT o

Next, we introduce a product formula based on this split [3]. The first step of the

product formula is governed by the equations

(w]

(4.30)

(oo B o B s
o
N N
Il
O om

B,
+|o0
0

o O P

0
0
0

ol el
N- e N
o

which reduce to
Az+Bz=g (4.31)
These are simply the governing equations for the decoupled subdomains. The

initial conditions for this step are simply Zp, = LZn, and the result is an extended

predictor Z7, ;.

The second step of the product formula is governed by the remainder of the

evolutionary operator, 1. e.,

A 0O z o I 0 zZ 0
o o o|l|A|l+|I O -=-L|jA]=]0 (4.32)
0O 0O Z o -LT o z 0
or, in full, .
Az+A=0
zZ — LZ = 0 (433)
~-LTA=0

The initial conditions for this phasc of the algorithm are the results from the first

step of the product formula, i. ., the extended predictor Z;,4;. The outcome of

- G0 -



the sccond step is the updated solution zn41. Egs. (4.33) may be discretized by
means of the backward-Euler algorithm, to yield

A(Zny1 —2hpy) + DtAn41 =0

Zpny1 — LZnt1 =0 (4.34)

- LTAn+1 =0

The solution of this system of algebraic equations can be found readily. Combine

the first two cquations of (4.34) to obtain

ALzn41 = AZ5,, — OtAp (4.35)

Multiply this expression by LT and use the third of (4.34), with the result

LTALz, 41 = Mz, = LTAZ, : (4.36)

Finally, solve for z,,41 to obtain

Zn+1 = M_ILTAi:H_I (437)

which is a restatement of the mass-averaging rule formulated in Section 4.1.1.

Thus, the algorithm derived in Section 4.1.1 is recovered as a product formula
associated with a particuléf splitéing of the lagrangean form of the governing equa-
tions as expressed in (4.27). From general results concerning product formulae [3],
it follows that the resulting algorithm is unconditionally stable provided that the
extended equations (4.31) are integrated by means of an unconditionally stable
scheme. An alternative proof of this fact was given in [2]. 1t also follows from the
general theory that the algorithm can only be expected to be first order accurate
even when the extended equations (4.31) are integrated by means of a second order

accurate scheme.
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4.1.3. Group Implicit Algorithms in Structural Dynamics

In [4] a class of concurrent algorithms for structural dynamics, named there
Group Implicit algorithms, were proposed. Although the methodology derived in
Sections 4.1.1 and 4.1.2 can be applied to second order ODE’s by recourse to the
equivalence with linear systems established in (4.6), it was found, partly by trial and
error, that GI algorithms generally result in superior accuracy. The motivation for
GI algorithms is partly provided by the work of Petzold on systems of ODE’s with
algebraic constraints. Gear and Petzold showed in [5] that the order of accuracy
of numerical methods of solution of differential/algebraic systems is enhanced 1if
the constraints are differentiated and enforced in differential form. In structural
dynamics, this means enforcing compatibility of accelerations between subdomains,

rather than displaccments or velocities.

A method sugé;ested by these ideas is outlined in Box 1, for the nonlinear case,
and in Box 2, for the special case of a linear structure. As may be seen, the predictor
and corrector phases are chosen to be identical to those in Newmark’s method [6].
The present scheme is at variance with Newmark’s algorithm in the equation solving
phase, where concurrency is introduced. Thus, the predictor displacements s
for time tn4, are first localized into the subdomains to obtain a collection of local
predictors {d%,,;, r = 1,...,s}, where s dcnotes the number of subdomains in
the partition. The corresponding local acceleration arrays aj, ., are then computed
from d},; by applying Newmark’s update at the subdomain level. To restore
compatibility between subdomains the mass averaging rule

An41 = M—l Z Mré:-{rl (438)

r=1

must be applied. This completes one application of the algorithm.
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Box 1. A Group Implicit Concurrent Algorithm

o Predictor phase:

dpyr = dn + Atv, +(1/2 = B)At?a,

‘711—{-1 =Vvn+ (1 - V)Atan

¢ Equation solving phase:

a,+1 =20
for r=1,sdo
Solve :
"an t G™(dl 4y + BAL%EL Vi +yAtEL L) = 0
r

Ang1 — ant1 +MTag,

-1
Ap4l M~ an

o Corrector phase:

dn+1 = an+] + ,BAtQan+l

Vaut1 = i}n+] + 7Atan+l
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Box 2. Group Implicit Algorithm - Linear case

o Predictor phase:

e Equation solving phase:

Ap4] = 0
for r=1,sdo
ar,, = —(M" +7AtCT + BALKT KL,

e Corrector phase:

-1
Ant1 < M™ a4

dpyr =dn + Atv, +(1/2 - B)At*a,

Vat1 = Vo + (1 — 7)Ata,

An41 < Apgr t+ Mré:;.‘..]

dn+1 = an+] + ﬂAtza,,+1

Va1l = Vag1 +yDtaR4

It is noted that the algorithm reduces to Newmark’s method for the trivial

partition, s

1. For s > 1, the subdomains arc cffectively decoupled during
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the équation solving phasc. Conscquently, they can all be processed in parallel.
No global stiffucss arrays nced to be formed or factorized at any time during the
computations. In addition, the communication between processors during each
time step reduces to the transfer of the local acceleration arrays. This keeps the

communication overhead to a minimum.

In the nonlinear case, local systems of nonlinear equations need to be solved
for the accelerations a7, ;. In the procedure outlined in Box 2, this may be accom-

plished by means of a local Newton-Raphson iteration.
4.2. Algorithmic Properties

In this section, the Group Implicit algorithms are analyzed. It is shown that,
although the algorithm has the same range of unconditional stability as Newmark’s
method, a Courant type condition must be complied with to avoid accuracy break-
down in the form of inadmissible phase errors. Numerical examples on a membrane
follow to show that such condition leads to a conservative criterion. Theoretical

estimates of the efficiency of such methods are presented.
4.2.1. Accuracy. Phase Errors

Past experience with semi-implicit algorithms points to their limited ability to
propagate information between distant parts of the structure is the main source of
numerical error. For the method under consideration, the fact that information is
exchanged only between ncighboring subdomains during each time step places some
restrictions on the time step size necessary to attain a given level of accuracy. This
limitation is common to all semi-implicit algorithms and was first noted by Mullen
and Belytschko [7]. Although their original analysis was specifically concerned with

Trujillo’s algorithm, the main conclusions carry over to the present setting as well,

as shown next.



A one-dimensional continuum undergoing displacements u(z, t) governed by

the wave equation

&= c*uyrs (4.39)

is considered next, where ¢ is the celerity of the waves. The continuum is then dis-
cretized into a finite element mesh of uniform size Az consisting of two-node linear
elements. For simplicity, element-by-element partitions of the mesh are considered
first, in which the subdomains are taken to coincide with the elements themselves.
Under these conditions, the local acceleration predictors are computed entirely at
the element level. The local amplification matrices (see Box 2), for the undamped

case, are computed to be

F(At) = MS(M* + BAPK®) T K", (4.40)

which in the case considered here reduces to

F(AL) = K¢/(1 + B(2r)?), (4.41)

where, r is the Courant number and is defined as

cAt
= —. 4.42
r= (4.42)

The equation solving phase of the concurrent algorithm takes, then, the trivial

form
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1 ~
a, ————Kdn41 =0 .
Ma +1 + 1+ ,3(27‘)2 +1 (4 43)

In full, these equations read

2 2
n+l _ _ijéi'J__ ind1  jn+l in+1

where the symbols d7, v} and a] are used to denote the displacement, velocity and

acceleration at x = jAz and t = nt.

Taking for simplicity v = 1/2 and 3 = 1/4, the preditor phase reduces to

2

~ At :
d,l+1 = dn -+ Atvn + -—4—-(an -+ an+1) (445)
and the corrector phase to
-~ At
dot1 =dng1 + A+ (4.46)
AN
Vau4l = _2_(371 + an+1) (447)
These equations can be combined to obtain
AN
d11+l - dn + T(Vn + Vn+1) (448)

Next, a simple wave
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d;l — Aei(wnAt+ijz)

v;} — Bei(wnAt+ijz) (4‘49)

a;l — Cer(wnAH»k]Az)

is considered, where w and k are the frequency and wave number, A, B and C
are the amplitudes of displacement, velocity and acceleration, respectively, and

i = /=1. Substituting (4.49) into (4.48) and (4.47) one obtains

o eiwAt -1 o eiuAt -1 2
B = _— = | — ————— 4.
A si1h © (At e-wm+1> A (4.50)

whereby the amplitudes of velocity and acceleration are related to the amplitude

of displacement.

Substituting (4.49) and (4.50) into (4.44) and making usc of (4.45), simple

manipulations result in the transcendental equation

Cp 1 1 r?

‘e 21 —
c kDzr 1472

(1- coskAx)] (4.51)

where ¢, = w/k is the celerity at which the wave is propagated by the algorithm.

A plot of eq. (4.51) is shown in Figure 3. For comparison, the corresponding

relation for Newmark’s algorithm is depicted in Figure 4.

It is seen from this plots that both algorithms retard the waves as the ratio r =
¢t/ Az is increased. The retardation effect is worst for short wave lengths. The
differences between both algorithms become more apparent in the long wave length

range, owing to the fact that the concurrent algorithm exhibits a maximum cclerity
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CONCURRENT, EBE (3 = 0.25, v = 0.5)

10° 4

5 103 kAx/m =}

a kax/m = 1/4

& kAx/n = V/16
10°

4010"47 T
10 ] e} 10 10
cat/ax

Figure 3. Transcendental equation.

NEWMARK (8 = 0.25, y = 05)

10‘% kax/m = 116
b kix/m = 1/4
kax/m =1
x 10°
4
=
N
-
10'3
N
10 L
10 10 10 10

cAt/ax

Figure 4. Newmark’s Algorithm relation.

cmaz = Az /At independent of the wave length. In other words, the element-by-
element concurrent algorithm can propagate information at a maximum rate of
one mesh size per time step independently of the wave length, a limitation which
is not shared by Newmark’s method. Clearly, this is a consequence of the fact that
the concurrent algorithm allows only for next neighbor interactions between the

subdomains over a time step.
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For arbitrary partitions into subdomains of length Ly, the above reasoning
leads to the conclusion that the cclerity of the waves as computed from the con-

current algorithm is bounded by the maximum value

L,

mar — a4 4.52
c N, (4.52)

independent of the wave length. Therefore, it is clear that for the computations to

be accurate the time step size has to be chosen such that cpmaz < ¢, 1. €.,

At £

L, (4.53)
C

This is a Courant-type condition based on the dimensions of the subdomains.

Condition (4.53) places some restrictions on the time step size to be used in
the computations. It should be emphasized that condition (4.53) stems from accu-
racy rather than stabi_lity considerations. In fact, the algorithm is unconditionally
stable, as shown in section 4.2.2, and the solution remains bounded always. This
limitation is common to most unconditionally stable semi-implicit algorithms [7].
It is noticed, however, that the Courant condition (4.53) is formulated on the basis
of the subdomain size L,. This is in contrast to methods of explicit integration for
which the Courant stability condition is based on the mesh size. Thus, for coarse
partitions of the mesh comprising a small number of relatively large subdomains,
condition (4.53) is far less stringent than the stability requirements for explicit
integration. This enables the usc of practical time step sizes commensurate with

those appropriate for implicit methods.
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The next set of examples aims at testing the hypothesis formulated above,
namely, that the accuracy of the concurrent algorithm in wave propagation com-
putations is governed by a Courant-type condition based on the dimensions of the
subdomains. The test problem used for this purposec concerns a square membrane
of size L supported on stiff springs all around its perimeter. The problem is made
nonlinear by supporting the membrane on a nonlinear elastic foundation obeying

a force-deflection law

f=101+a(w/we)*Jksw (4.54)

where k, a and wg arc material constants. The values of the parameters used
in the computations are: ¢ = \/m =1, kj/(km/L) = 1, a/(wo/L) = 1 and
ky/(km/L) = 10*, where ky, &y and kj are the stiffness of the membrane, founda-
tion and boundary springs, respectively, and p is the mass density of the membrane.
In all the results reported below, deflections are normalized by L and time by L/c.
The initial conditions investigated consist of a uniform initial velocity vo = ¢ im-
posed on the underformed membrane. In the linear case, these initial conditions

excite all the modes of vibration of the membrane.

The reason for supporting the membrane on stiff springs rather than on rigid
supports is to illustrate the importance of unconditional stability in inertia-domi-
nated structural computations. In the linear case, the effect of introducing the stiff
supports is to add a set of very high frequency components to the spectrum of the
structure. If the main interest of the analysis lies in the response of the membrane,
methods which accurately integrate the low frequency componénts without having
to resolve the short periods of vibration become advantageous. This property is

tantamount to unconditional stability. By contrast, conditionally stable methods
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Figure 5. Uniform Impact (8 = 0.25, v = 0.5)

such as explicit integration are restricted to time step sizes governed by the high
frequency components. In the example under consideration, the critical time step
for explicit integration can be made arbitrarily small by increasing the stiffness of
the boundary supports. This process leaves the response of the membrane virtu-
ally unchanged, and thus renders explicit integration increasingly inadequate. By
contrast, the concurrent algorithms under consideration enjoy the unconditional
stability property and the time step can be chosen independently of the stiffness
of the boundary springs without any appreciable effect on the computed response
of the membrane. Thus, in the context of structural computations on parallel ma-
chines this simple example illustrates the importance of achieving concurrency and

accuracy without compromising stability.

Figures 5-10 show the results obtained from the concurrent algorithm for dif-
ferent degrees of mesh refinement and time steps chosen according to the Courant
contition (4.53). Since the size L, of the subdomains decreases with the num-
ber NS of subdomains as L, = L/VNS ~ NS~1/2 the Courant criterion calls
for reducing the time step also as NS~1/? in order to maintain the level of accu-
racy. Figure 5 shows the results corresponding to the trivial partition, for which

Newmark’s method is recovered, and a time step At = 0.05.
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Also shown for reference in Figure 5 are the results obtained from the direct
application of Newmark’s method with a time step which renders the algorithm
virtually exact. Thus, Figure 5 illustrates the kind of accuracy which is obtained
from Newmark’s method for At = 0.05. Next, Figure 6 shows the results obtained
from the concurrent algorithm with NS = 4 and a time step VNS = 2 times
smaller than that used with Newmark's method. Comparing Figures 5 and 6, it
is concluded that the level of accuracy achieved from the concurrent algorithm is

comparable to that obtained from Newmark’s method, with At = 0.05.

UNIFORM IMPACT (3 = 0.25, 7 = 0.5)

CENTER DtSPL ACEMENT

OB e NEWMARK. h = 0 006
e 4 SUBDOMAINS, h = 0.025

T T T T T T v
00 10 20 30 40 60 80 70 80
TIME

Figure 6. Uniform Impact (8 = 0.25, v =0.5)

Figures 7 and 8, depict the results corresponding to NS = 16 and At = 0.0125,
and to NS = 64 and At = 0.00625, which again do not exhibit any appreciable

accuracy deterioration with respect to Newmark’s algorithm.

By the time the number of subdomains is increased to 256 and the time step
is reduced to At = 0.003125, it becomes apparent that the accuracy of the com-
putations is not only maintained but is improved significantly, Figure 9. For an
element-by-clement partition with At = 0.0015625, Figure 10, the computed re-

sults are virtually exact. It should be emphasized that all the time steps utilized
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in the computations are orders of magnitude above the critical time step for ex-
plicit integration by virtue of the stiff boundary supports. As discussed above, in
cases like this explicit methods are placed at a clear disadvantage with respect to

unconditionally stable algorithms.

These results suggest that the Courant condition based on the subdomain
dimensions is indeed a conservative criterion which can be confidently used in wave
propagation problems. However, in some cases this criterion seems to be overly

conservative and results in increased accuracy as the mesh partition is refined.
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This bears on the fact that the Courant condition is based on a worst possible
scenario, namely, a solution dominated by short wave lengths. As discussed in
befofe, this situation exacerbates the accuracy limitations of concurrent algorithms.
It is interesting to note that fully implicit algorithms such as Newmark’s method do
not fare particularly well cither in situations dominated by high frequency modes
such aé shock waves. In fact, such cases are optimal for the application of explicit
methods. Thus, in typical structural applications it is likely that the Courant
condition can be substantially relaxed without detriment to the accuracy of the

solution.
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4.2.2. Stability

The stability properties of the concurrent algorithm for first order systems
outlined in Scction 4.1.1 were established in [1]. Here we establish the range of un-
conditional stability of the GI algorithm defined in Box 2. The stability properties

of this algorithm are summarized in the following proposition.
Theorem. The GI algorithm is unconditionally stable if v > 1/2, 8 > v/2.

Proof.

Start by expressing the algorithm in Box 2 as

dyi1 = dn + Atv, +(1/2 - B)At*a, (4.55)
Vag1 = Va + (1 —7)an (4.56)
a1 = —M'LTM(M + 8A#2K)'KLd 41 (4.57)
dnt1 = dus1 + 8O a0 (4.58)
Vatl = Vng1 + 7041 (4.59)

The first and last two equations are indentical to those in the predictor and cor-

rector phases of Newmark’s method. Rewrite (4.57) as

ans1 = —MTTH(A)dn+1, (4.60)

H(At) = LTM(M + SA#K) KL (4.61)

where L is the localization operator defined in Section 4.1.1. Note that the matrix
H(At) is assembled from subdomain contributions, i. e.,
H(At) = LTH(At)L, (4.62)
H(AH) = M(M + 8APK) 'K (4.63)
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chtA, formulate the cigenvalue problem

H(At)x — A(AH)Mx =0 (4.64)

When expressed in the basis defined by the eigenvectors of (4.64), eqs. (4.55-59)

reduce to

dppr = dn + Otvn + (1/2 = B)Ata, (4.65)
Fus1 = vn + (1 —7)an (4.66)
ans1 + MAdps1 =0 (4.67)
dpy1 = dusr + BOCanss » (4.68)
U1 = Tngt + 7 O0tang1 (4.69)

where the scalar variables d, v and a represent the modal amplitudes of displace-
ment, velocity and acceleration corresponding a generic eigenmode. Again, these
equations are identical to the modal Newmark relations except for equation (4.67),
which in Newmark’s method is replaced by

w2 -

dug1 =0 (4.70)

Gny1 + ———7dn
T 4 BwrAf?

where w is the corresponding eigenfrequency. However, we can rephrase (4.67) in

a form similar to (4.70) by defining a time-step dependent ficticious frequency

SAL) = ALY - (4.71)
1 — BA(D) AL
in terms of which (4.67) becomes
O (At) .
n - ln =0 4.72
it ¥ TR anar (4.72)
Next we show that

WAL < oo,  YAL>0 (4.73)
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By Iron’s bounding principle (8],

AAL) < Amax(At) (4.74)

where Anax(At) is the maximum eigenvalue of the extended problem

H(AHR — M(At)Mx =0 (4.75)

Using dcfinition (4.63), this can be rewritten as

Kx — MAH)(M 4+ BAPK)X =0 (4.76)

Inserting for x the maximum eigenmode of K with respect to M, we obtain the

relation

@2

Amax = max 4.77
1+ Bo2, At (477)

max

where Omayx is the maximum eigenfrequency for the extended system with stiffness

K and mass M. From (4.77) we have

- AN
MADAL < Bimax(A)ALE = max

max

<1, VAt<oo  (4.78)

From this and (4.71), it follows that w?(At) is indeed bounded for arbitrarily
large At. The implications of this result are as follows. For a given At, egs.
(4.65), (4.66), (4.68), (4.69) and (4.72) are identical to Newmark’s modal equations
with a frequency W(At) < co. Hence, the GI algorithm has the same range of

unconditional stability as Newmark’s method, i. e., it 1s unconditionally stable for

v >1/2,8>~/2.



4.2.3. Operation Counts.

In this section the GI algorithms are compared with the one-way dissection
method. This method is used for the solution of systems of linear algebraic equa-
tions arising in finite element applications [9]. In essence, the one-way dissection
method amounts to a reordering of the elements in the model. Its main advantage
is the reduction in storage requirements and in the operations needed for factorizing

the matrix of coeflicients of the system.

Figure 11. An m by { grid with m = 6 and [ =11, [9].

Consider a m x [ grid, Figure 11, with m < I. The total number of nodes is
then given by N = Im. For simplicity of notation, one degree of freedom per node is
assumed. The one-way dissection method is based on a partitioning of the grid by
o vertical lines (separators), which dissect the mesh into o +1 independent blocks.
Each ”sub-mesh” is numbered row by row followed by the separators. Figure 12

shows the case ¢ = 4.

The leading term of the operation count for matrix factorization resulting from

the one-way dissection ordering is found to be [9]

ml3

OWD
67O~ 511y

(4.79)
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Figure 12. One way dissection ordering of an m by [ grid, in-
dicated by the arrows (¢ = 4), {9].

On the other hand, the number of operations required for the factorization of a

banded matrix is asymptotically [9]

6, = %sz (4.80)

with N as defined above and b denoting the semi-bandwidth of the matrix. Each
subdomain in the partition contains a (! + 1)/(o + 1) x m grid. The bandwith of
the subdomain matrices is b = (1+1)/(c + 1) + 1. Thus, the factorization cost in

the GI algorithm is of the order

() ()] we

the leading term for which is

G ml3
(6.()2] ~ 2

It is thus concluded that, to leading order, the factorization cost of GI algo-

rithms is of the same order than that of one-way dissection. The principles at work
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n both methods are, in fact, identical. In both cases, the renumbering associated
with the partition or the dissection of the grid eliminates fill-in by off-diagonal

zeros, thus cutting down on unnecessaty zero multiplies during factorization.
4.2.4. Theoretical Speed-ups

To estimate the computational efficiency of the method, let us start by recalling
that the number of operations involved in matrix factorization and forward and

backward substitution is

FACTORIZ ~ =nb*, SUBSTIT =~ 2nb (4.83)

Lo

where b is the semiband width and n, as before, is the number of degrees of freedom
of the structure. In typical structural applications, the cost of large scale nonlinear
computations is dominated by the equation solving phase. Under these conditions,

a good estimate of the computational cost is given by

COST ~ (FACTORIZ + SUBSTIT) x ITER x STEPS (4.84)

where ITER is the average number of equilibrium iterations per time step and
STEPS is the number of time steps required for a given duration of the analysis

T,i. e., STEPS = T/ At.

In two dimensions, consider a square mesh of [? elements. Then, b = [ + 2,

n = (I +1)? and, thus, a global system solution requires
1
GLOBAL ~ (1 + NP1+ 1) + 21+ 2)(1 + 1) (4.85)

operations. Assume now that the mnesh is partitioned into s = m? subdomains.

Then, the cquation solving cffort involved in one application of the algorithm is

1 /1 2/ 2 ! ! 2
PARTIT ~ s ;(—+2> —+1> +2(—+2)(=+1 (4.86)
2\m m m m
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Figure 13. Reduction in number of operations required for one
factorization and backsubstitution in square membrane problem
as the mesh is partitioned into an increasing number of subdo-

mains
For nontrivial partitions, this count is less than that pertaining to the global system.

Thus, the net speed-up in equation solving afforded by the partitioning is given by

GLOBAL

r v - = DSaApTrT
EQUATION SOLVING SPEED-UP PARTIT

(4.87)

The dependence of this function on the number of subdomains is shown in Fig-

ure 13. It is readily verified that a speed-up of order

EQUATION SOLVING SPEED —UP(2D) = O(s) . (4.88)

is attained asymptotically in the large scale limit n/s — oo.

The three dimensional case is amenable to an entirely similar analysis. The

resulting speed-up is shown in Figure 14 as a function of the number of subdomains.
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3D CASE (4096 ELEMENTS)
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Figure 14. Reduction in number of operations required for one
factorization and backsubstitution in cube problem as the mesh
is partitioned into an increasing number of subdomains

Here, an asymptotic speed-up of order of

EQUATION SOLVING SPEED — UP(3D) = O(s*/*)

is reached in the large scale limit.

Some aspects of these estimates are noteworthy. Firstly, it is seen from Figures

13 and 14 that some efficiency is gradually lost for a given size n as the number of
subdomains s is increased. This loss is due to the fact that the interface nodes need
to be reduced more than once during the subdomain factorizations. On the other
hand, it should be noted that these speed-ups cannot be fully realized in practice
due to the fact that, in order to maintain the accuracy of the solution, the time

step needs to be reduced as the number of subdomains is increased, as discussed

in Section 4.2.1.
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It turns out, however, that accuracy constraints offset the equation solving
speed-ups only partially, and thus net gains remain. To see this, rccall that the
Courant condition (4.53) requires the time step to be reduced as 0(1/s'/?) in 2D,
equation (4.93), and as 0(1/s'/%) in 3D, equation (4.97). This leaves a net speed-
up of O(s*/?) in 2D and O(s) in 3D, which in conjunction with the O(p) speed-up
afforded by concurrency yields

NET SPEED — UP(2D) = O(pV/s),
(4.90)
NET SPEED — UP(3D) = O(ps)

It should be emphasized that these speed-up estimates involve two parameters,
namely, the number of subdomains s in the partition and the number of proces-
sors p in the machine. The speed-ups represent the reduction in execution time
obtained with respect to the straight application of Newmark’s method (s = 1)
on a sequential machine (p = 1). Factored into the estimates are three cffects: a)
the reduction in equation solving effort due to the the partition of the mesh; b)
the linear speed-up afforded by the concurrency of the computations; and c) the
gradual loss of accuracy incurred as the number of subdomains is increased. Even
with this latter effect factored in, it is seen that net speed-ups result, even on one

Processor.
4.3. Numerical Experiments

In this section, we endeavor to assess the performance of GI algorithms by
way of numerical testing. Firstly, we seck to verify the time step requirements
for accuracy derived in Section 4.2.1. Our numerical simulations suggest that the
Courant-like condition (4.53) is indeed of value in actual 2D and 3D applications.
Next, we compute the actual speed-ups afforded by the GI algorithm as the number

of subdomains and processors is increased, while choosing the time step so as to
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maintain a constant level of accuracy in all cases. Finally, some simulations are

shown which demonstrate the high communication cfficiency of the method.
4.3.1. Actual Time Step Required in 2D

In Scction 4.2.1, it was demonstrated how accuracy considerations place limits
on the size of the time step which become increasingly stringent as the partition is
refined. Here we seck to determine the exact time steps requirements in an actual
application. As a two dimensional example, the problem of an elastic membrane
undergoing finite deflections is considered. This analysis is representative of struc-
tural computations in that the element operations are relatively inexpensive, so
that the cost of the analysis is dominated by equation solving. The purpose of the
simulation is to determine the actual time step required to maintain a prescribed

level of accuracy as the number of subdomains is increased.

The element utilized in the calculations is a four node quadrilateral obtained
by averaging two triangular assemblies, each splitting the quadrilateral along one
of its diagonals. The constituent triangular elements are endowed with a strain
energy of the form

W= 212— (4.91)

2 Ap
where T is the tension of the membrane, and A4 and A, are the areas of the deformed
and undeformed triangles. It is easily checked that this formulation reduces to the

usual small deflection theory of membranes when A = Ay.

The membrane in the analysis is taken to be square and to be simply sup-
ported all around its perimeter. The values of the material parameters adopted
arc T = 1 and a mass density p = 1. Initially, the membrane is supposed to lie in its
undeformed configuration, and to be subjected to blast loading resulting in a uni-

form initial velocity throughout its surface. The magnitude of the prescribed initial
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velocity, vg = 1, is enough to generate strains of the order of 30% and rotations of
the order of 45°. The half size of the membrane is taken to be L = 1. By virtue
of the symmetries of the solution, the analysis may be restricted to one quarter
of the membrane. Throughout the computations, this domain is discretized into a
64 x 64 regular mesh. The deflected shapes of the membrane at various stages of

the solution arc shown in Figure 15.

The partitions adopted in the calculations divide the domain of the analysis
into equal square subdomains. Let m be the number of subdomains per side. Then,
the number of subdomains in the partition is s = m?. Clearly, with increasing m

the size of the subdomains diminishes according to

AL =L/m (4.92)

Hence, the Courant condition (4.53) necessitates a stcady reduction of the time

step of the order
At =~ Atg/m = Dto /s (4.93)

for the accuracy of the calculations to remain unchanged under increasing refine-
ment of the partition. Aty denotes a choice of time step appropriate for Newmark’s
algorithm, i. e., for the case s = 1. It is scen that, according to estimate (4.93),
the required time step is a decreasing function of the number of subdomains. In
Section 4.3.3 it is shown that this cffect is amply offsct by the reduction in equation
solving effort afforded by the method. Thus, a net gain in cfficiency remains over

Newmark’s algorithm, even on a single processor.
4 o

The membrane calculations are carried out for an increasing number of subdo-
mains, with several time steps around the theoretical value (4.93). The time step

adopted for Newmark's algorithm is At = 0.05. Figure 16 depicts the time history

- 87 —



CENTER DISPLACEMENT

CENTER DISPLACEMENT

CENTER DISPLACEMENT

UNIFORM IMPACT (3 = 0.25, y = 0.5)

™

o
o
1

(=
~
1

00+

0.4

-0.8 4

NEWMARK, h = 0.005

1SUBDOMAIN, h = 0.05

-12 T Y T T T T
00 06 10 15 0 26 3.0 as 40

TIME

UNIFORM IMPACT (8 = 0.25, y = 0.5)

0.8

0.4

0.0

0.4

NEWMARK, h = 0.005
16 SUBDOMAINS, h = 0.0125

-0.8

sereunmene

1.2 T T T T T
-00 08 1.0 16 .0 25 30 36 40

TIME

UNIFORM IMPACT (8 = 0.25, y = 0.5)

12

0.8 A

0.4

0.0
+0.4 4
«0.84  woeeesens  NEWMAREK, h = 0.005

— 258 SUBDOMAINS, h = 0.003125
-12 Y T T 4 T T ¥
00 06 X:] 15 20 26 30 36 40
TIME

- 88 -

CENTER DISPLACEMENT

CENTER DISPLACEMENT

0.8

0.4 1

0.0

-0.4

-0.8

-1.2

UNIFORM IMPACT (8 = 0.25, y = 0.5)

NEWMARK, N = 0.005
4 SUBDOMAINS. h = 0.025

—s

T T =
00 06 1.0 156 20 26 30 36 40
TIME

UNIFORM IMPACT (8 = 0.25, y = 0.5)

12

0.8+

0.4+

0.0
0.4 4
IR T - NEWMARK. h = 0.005

~—nn 84 SUBDOMAINS, h = 0.00825
-2 T T T ¥ A A T
00 06 10 [k 20 286 30 36 40
TIME

Figure 16. Time history.



REQUIRED TIME STEP

—— COMPUTED
e THEQRETICAL
3‘10.3 o T 7T TTTYY T N R e ‘..’
1
10 10 10°

NUMBER OF SUBDOMAINS

Figure 17. Estimate of actual time step, 2D.

of center deflection computed from various partitions of the mesh. The errorin the

solution is then computed as

dt

3 (4.94)

T
ERROR2 = /(; ‘ w(t) - werac!(t) l2

where w(t) and wezqci(t) are the computed and exact center deflections, respec-
tively. In lieu of an exact solution, the results from Newmark’s method with a small
time step (At = 0.005) are utilized. The above definition of the error provides a
measure of the period elongation in the computed solution. In particular, it can

be shown that
. T . , at]”’
lim /0 | sin(wt) — sin((w + Aw)t) | 7 x Aw (4.95)

— o0

For each partition of the mesh, the calculations are repeated for several time

steps around the theoretical estimate (4.93), and the error measure (4.94) com-
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puted. Then, by linear interpolation, the actual time step is computed to maintain
the level of error resulting from Newmark’s method. The results are shown in Fig-
ure 17, together with the estimate (4.93). As may be scen, the theoretical accuracy

requircments are realized quite closely.
4.3.2. Actual Time Step Required in 3D

Here we repeat the analysis of Section 4.3.1 for a three-dimensional problem.
We consider the case of an elastic cube supported on a rigid foundation and un-
dergoing finite deformations. The material behavior is characterized by the simple

stress-strain relation

Sry=AExrbry+2uEr;y (4.96)

where S;; and Ejj are the components of the second Piola-Kirchhoff stress ten-
sor and the Lagrangean strain tensor, respectively, and A and p are Lame-type
constants. The material parameters used in the calculations are A = 8 x 10° and
g = 8 x 107, which results in nearly incompressible behavior. The mass density
of the material is taken to be p = 200. The dimensions of the cube are L = 100.
The body is loaded by means of uniform velocities v; = 150, v = 300 suddenly
applied on the foundation in the directions of the sides of the cube. The magni-
tude of the velocities suffices to produce strains of the order of 30%. The cube is
discretized into 64 brick elements. The method used to avoid mesh locking due to

near-incompressibility is described in [10].

Following the application of the initial velocities, the cube undergoes a slosh-
ing motion. In the linear range, the low frequency modes of this response are
dominated by the shear response of the solid. Our choice of parameters is intended
to underscore the benefits derived from unconditional stability. Thus, whereas the

response of interest lies mainly in the low frequency part of the spectrum, explicit
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algorithms are required to resolve the high frequency modes corresponding to the
volumetric response, which in the problem under consideration necessitates the use

of impractically small time steps.

As in the two dimensional simulation, the mesh is partitioned into a varying
number of cubic subdomains. If m is the number of subdomains per edge of the

cube, so that s = m3, the Courant condition (4.53) then demands that

At = Ato/m = Dtg /s (4.97)

To determine the actual time step requirements, the accuracy of the compu-
tations is monitored at the uppermost center node of the cube. The histories of
one of the horizontal displacements at this location are shown in Figure 18 for

the various mesh partitions used in the computations. Figure 19 shows the time

- 092 -



stepbrcqnirements resulting from the accuracy analysis. As in the two dimensional
case, the actual time step requirements conform closely to the theoretical estimate

(4.53).
4.3.3. Performance Assessment

From the theoretical estimates derived in Section 4.2.4, it is evident that the
execution times are primarily dependent on two variables: the number of processors
p and the number of subdomains s in the partition. Figure 20 shows the execution
times for the membrane problem described in Section 4.2.1 as a function of the
algorithmic parameters p and s. The calculations are run with the actual time step
required to maintain the level of accuracy as the number of subdomains is varied.
For the test problem under consideration, these time step requirements are given in
Section 4.2.1. Thus, the execution times being compared correspond to solutions

of comparable accuracy.

It should be noted that Figure 20 gives equation solving times only. For
typical large scale nonlinear structural problems, the execution times are indeed
dominated by the equation solving phase of the computations. A main motivation
for reporting these data, however, is that equation solving, unlike other aspects
of finite element computations, is a fairly standardized procedure. This renders
comparisons of data from different codes more straightforward. In the calculations
reported here, we have used Taylor’s variable bandwidth implementation of Crout’s

method [11].

It is seen from Figure 20 that, for a fixed number of subdomains, the speed-
ups obtained are roughly lincar in the number of processors p. The proportionality
factor between speed-up and p is a measure of the cfficiency of the computations,

and is investigated in the next scction. For a fixed number of processors, a net
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Figure 20. Execution times for the membrane as a function of
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speed-up is obtained as the number of subdomains is increased. The single proces-
sor case, p = 1, is shown in Table 1. As may be seen, the observed speed-ups lag
behind the O(y/s) asymptotic estimate. This is not unexpected since such estimate
is only realized in the large scale limit n/s — co. Despite the relatively small size
of the test problem under consideration, the net gains afforded by the algorithm
may be quite substantial even on one processor. For instance, for 256 subdomains

an almost five fold speed-up is obtained over Newmark’s method.

Figure 20 also illustrates the synergism between concurrency and refinement
of the partition, 1. e., the fact that the corresponding speed-ups combine multi-
plicatively, rather than additively. For the case p = 8, the maximum number of
processors in the FX8, and 256 subdomains, the net equation solving speed-up is
of the order of 33.7, a rather formidable performance enhancement. By compar-

ison, parallel solvers result in speed-ups which are, at best, linear in the number
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of processors. In the present method, by contrast, an additional speed-up (asymp-
totically O(/s) in 2D, O(s) in 3D) is introduced by the partitioning of the mesh
which provides an additional edge over parallel solvers.

TABLE 1.- Equation solving timings on one processor.

Membrane example.

4096 ELEMENT CASE
s Seconds | Speed-up | Asymp.
1 37100 1 1
4 20515 1.32 2
16 9529 2.84 4
64 7006 3.87 8
256 5898 4.59 16

4.3.4. Computational Efficiency on the CalTech Hypercube

Another important performance measure 1s the fraction of time the processors
are actually kept busy, i. e., the efficiency of the computations. Overhead due
to extensive interprocessor communication has a negative effect on computational
efficiency. The minimization of the extent of data transfer between processors thus
becomes a principal concern in algorithm design. For the GI algorithms considered
here, the exchange of information between processors is reduced to the transfer of
one linear array per time step. Thus, interprocessor communications are kept to
a minimum. An illustration of the high performance of the algorithm is given in
(12], where actual simulations on the CalTech/JPL Mark IIT hypercube machine
are presented. This computer consists of 32 (25) processors (or nodes), configured

as a 5-dimensional hypercube.

The GI algorithm was implemented within a finite element program on the
Mark III hypercube and used to analyze the plane stress model of a cantilever

beam with a tip load, Figure 21.
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Figure 21. Cantilever beam, neq = 2142, nel = 1024

The purpose of this study is to evaluate the efficiency of the algorithm on a local

memory architecture. Computational efficiency is here defined as

e= I (4.98)
PTp
where T, is the time for performing the analysis on p processors, and T} is the time
for an identical analysis on a single processor. In a typical run all the processors
begin simultaneously, but end their tasks at different times. T}, is then the time
for the slowest processor. This time difference is due to two effects. The first is
a load imbalance whereby some processors may have a larger task (in our case
more elements to process). The second arises when some processors have more

information to send/receive than others.

The beam is discretized into a 16 x 64 regular mesh of plane stress elements,
Figure 21. The mesh is then partitioned into 4,8,16, and 32 identical sub-structures.
All the separators (partition lines) are thfough the thickness (vertical). Since all
processors are assigned the same number of elements, these partitions ensure opti-
mum load balancing and are chosen to illustrate the performance of the algorithm.
As a result of this partitioning scheme all processors will have the same computa-

tion time. Thus, the difference between Ty /p and T}, is the required communication
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time and for this problem the efficiency becomes

Tcomm(p)

e=1-—
Tcalc(p)

(4.99)
where Tromm and Teqic are the maximum communication time and calculation time,
respectively. Note that the above choice of partitioning results in the same number
of interface nodes on all processors (with the exception of the domains at each end)

and thus the same communication time.

99

Efficiency
(%)

9q L 1 1 s A ! 1 i

Number of Processors

Figure 22. Efficiency Results for the beam problem.

Figure 22 gives a plot of the measured efficiency rate for an increasing number
of processors. In all cases, an efficlency of well over 90% is observed. Since the mesh
is partitioned vertically, the number of interface nodes between subdomains, and
thus the communication time among processors, does not change with the number

of processors. However, as the number of processors increases, the number of
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clements per processor decreases. As a result, the calculation time drops resulting
in a reduction in the cfficiency rates. When 32 processors arc used, the subdomains
are small (32 clements per processors). In larger problems, the efficiency rates are
expected to improve further. Note that when going from 16 to 32 processors, one
could choose the neutral axis of the beam as a partitioning line. This in turn would
reduce the communication overhead and thus increase efficiencies over those shown

in Figure 22.
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